
INHERITANCE

Introduction to Inheritance

• Inheritance is a relationship between two or
more classes where derived class inherites
behaviour and attributes of pre-existing (base)
classes

• Intended to help reuse of existing code with
little or no modification

Inheritance

• Inheritance can be continous
– Derived class can inherit another class, which

inherits another class and so on

– When changing the base class all the derived
classes changes also

• Example:
– Mammal <– Human <– Worker <- Programmer

• Could mammal be a derived class? If so, what
would be the base class?

Picture about Inheritance

a

b

Class A

features: a,b

c

Class B

Features: a,b,c
d

e

Class C

Features: a,b,d,e

f

Class D

Features: a,b,d,e,f

Multiple Inheritance

• In multiple inheritance a derived class has
multiple base classes

• C++ supports multiple base classes, Java don't

Driver
- license
- Year of approval

Conductor
- Account number

Taxi Driver
- area

House

Boat

Houseboat

Inheritance and Capsulation

• private

– Is accessible only via the base class

• public

– Is accessible everywhere (base class, derived class,
othe classes)

• protected

– Is accessible by the base class and derived classes

Overriding

• Since programmer eats and drinks differently
than humans (only Coke and Pizza) the eat and
drink methods are overriden in Programmer!

Abstract Class

• Abstract class is a class which you cannot
instantiate (create objects)

• You can inherit abstract class and create
objects from the inherited class, if it is concrete
one

• Abstract class in C++ has abstract methods,
that do not have implementations

• These methods forces derived classes to
implement those methods

Example

<<abstract>>

Mammal

string name

void makesound() {abstract}

Elephant

int trunkLength

makesound()

Example

<<abstract>>

Figure

int x, y

double calculateArea() {abstract}

Circle

double radius

double calculateArea()

Rect

double length, height

double calculateArea()

Exercises

INHERITANCE IN C++

Declaring Inheritance

class Circle : public Figure

{

}

Declaring Inheritance

class Figure

{

public:

int x, y;

};

class Circle : public Figure

{

public:

int radius;

};

int main()

{

Circle a;

a.x = 0;

a.y = 0;

a.radius = 10;

}

Encapsulation

class Figure

{

protected:

int x, y;

};

class Circle : public Figure

{

public:

int radius;

};

int main()

{

Circle a;

a.x = 0;

a.y = 0;

a.radius = 10;

}

example.cpp: In function ‘int main()’:
example.cpp:5: error: ‘int Figure::x’ is protected
example.cpp:17: error: within this context
example.cpp:5: error: ‘int Figure::y’ is protected
example.cpp:18: error: within this context

Encapsulation

class Figure

{

protected:

int x_, y_;

};

class Circle : public Figure

{

private:

int radius_;

public:

Circle(int x, int y, int

radius);

};

Circle::Circle(int x, int y, int

radius)

{

x_ = x;

y_ = y;

radius_ = radius;

}

int main()

{

Circle a(0,0,10);

}

Encapsulation

class Figure

{

private:

int x_, y_;

};

class Circle : public Figure

{

private:

int radius_;

public:

Circle(int x, int y, int

radius);

};

Circle::Circle(int x, int y, int

radius)

{

x_ = x;

y_ = y;

radius_ = radius;

}

int main()

{

Circle a(0,0,10);

}

example.cpp: In constructor ‘Circle::Circle(int, int, int)’:
example.cpp:5: error: ‘int Figure::x_’ is private
example.cpp:18: error: within this context
example.cpp:5: error: ‘int Figure::y_’ is private
example.cpp:19: error: within this context

Encapsulation

class Figure class Circle : public Figure

{

private:

int x_, y_;

public:

void SetX(int

x);

{

private:

int radius_;

public:

Circle(int x, int y,

int

void SetY(int

};

void Figure::SetX(int

{

y);

x)

};

Circle::Circle(int x, int y,

{

SetX(x);

int

x_ = x; SetY(y);

} this->radius_ = radius;

void Figure::SetY(int y)

{

y_ = y;

}

radius);

radius)

}

int main()

{

Circle a(0,0,10);

}

What is the result?

class Figure class Circle : public Figure

{ {

public: public:

Figure() { Circle() {

cout <<

Constructor\n";

"Figure cout << "Circle

Constructor\n";

} }

~Figure() { ~Circle() {

cout <<

Destructor\n";

"Figure cout << "Circle

Destructor\n";

} }

}; };

int main()

{

Circle a;

}

Inheritance and Constructors

• When creating a object from derived class, also
the member values of the base class must be
initialized

• Base constructor is called before the derived
classes constructor

• Destructors vice versa.

Calling the Base Classes constructor

class Figure class Circle : public Figure

{ {

public: public:

Figure() { Circle() : Figure() {

cout <<

Constructor\n";

"Figure cout << "Circle

Constructor\n";

} }

~Figure() { ~Circle() {

cout <<

Destructor\n";

"Figure cout << "Circle

Destructor\n";

} }

}; };

int main()

{

Circle a;

}

Calling the Base Classes constructor

class Figure

{

private:

int x_, y_;

public:

Figure(int x, int y) : x_(x), y_(y) {

cout << "Figure Constructor\n";

}

~Figure() {

cout << "Figure Destructor\n";

}

};

Calling the Base Classes constructor

class Circle : public Figure

{

private:

double radius_;

public:

Circle(int x, int y, int radius) : Figure(x, y),

radius_(radius)

{

cout << "Circle Constructor\n";

}

~Circle() {

cout << "Circle Destructor\n";

}

};

int main()

{

Circle a(0,0,5);

}

Abstract Class

• In C++, Abstract class is a class that has one
abstract method

• Abstract method is a method without
implementation.

• Abstract method is created by reserverd word
"virtual"

Example of Abstract class

class Figure

{

private:

int x_, y_;

public:

Figure(int x, int y) :x_(x), y_(y) {

cout << "Figure Constructor\n";

}

~Figure() {

cout << "Figure Destructor\n";

}

virtual double calculateArea() = 0;

};

Example of Abstract class

class Circle : public Figure

{

private:

double radius_;

public:

Circle(int x, int y, int radius) : Figure(x, y),

radius_(radius)

{

cout << "Circle Constructor\n";

}

~Circle() {

cout << "Circle Destructor\n";

}

double calculateArea() {

return 3.14 * radius_ * radius_;

}

};

Example of Abstract class

int main()

{

Circle a(0,0,5);

cout << a.calculateArea() << endl;

// This Does not work, since figure is abstract:

// Figure f(0,0);

}

